How nanotechnology can enhance docetaxel therapy
نویسندگان
چکیده
Docetaxel has been recognized as one of the most efficient anticancer drugs over the past decade; however, its poor water solubility and systemic toxicity have greatly limited its clinical application. In recent decades, the emergence of nanotechnology has provided new drug delivery systems for docetaxel, which can improve its water solubility, minimize the side effects and increase the tumor-targeting distribution by passive or active targeting. This review focuses on the research progress in nanoformulations related to docetaxel delivery - such as polymer-based, lipid-based, and lipid-polymer hybrid nanocarriers, as well as inorganic nanoparticles - addressing their structures, characteristics, preparation, physicochemical properties, methods by which drugs are loaded into them, and their in vitro and in vivo efficacies. Further, the targeted ligands used in the docetaxel nanoformulations, such as monoclonal antibodies, peptides, folic acid, transferrin, aptamers and hyaluronic acid, are described. The issues to overcome before docetaxel nanoformulations can be used in clinical and commercial applications are also discussed.
منابع مشابه
Applications of nanotechnology in endodontic: A Review
Owing to its favorable impacts on the properties of materials, nanotechnology is rapidly growing. Adding nano particles to a material can significantly affect its mechanical and physical properties. In recent years, nanotechnology has been applied in the field of medical sciences in order to enhance the quality of treatment procedures. This technology can be used in various aspects of dentistry...
متن کاملCo-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance
Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients' survival. Induction of drug efflux due to overexpression of P-glycoproteins is considered as an important leading cause of multidrug resistance...
متن کاملTargeted therapy using nanotechnology: focus on cancer
Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has bee...
متن کاملDocetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies
Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...
متن کاملApplication of Nanotechnology and Biocomputation for Treatment of Cancer : A Review
Nanotechnology promises to provide quicker, reliable and affordable tools and applications to diagnose and treat an array of diseases to make human lives healthier. In the present review, an effort has been made to study how nanotechnology can help to address them. All at once, the possible role of biocomputation, as a means to specify cancer drug therapy, with an aim to apply the results in cl...
متن کامل